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AN EFFICIENT IMPLEMENTATION OF A  
BATCH-ORIENTED, MULTITARGET, MULTIDIMENSIONAL ASSIGNMENT 

TRACKING ALGORITHM WITH APPLICATION TO PASSIVE SONAR 

 
I. INTRODUCTION 

This study investigates the implementation of two versions of a batch-oriented, 

multidimensional assignment (MDA) approach for tracking contacts with long-duration 

crossings, on the order of 100 scans for a single dimensional space.  The environment 

being simulated is that of the passive sonar string in a line array with bearings-only 

information.  The model incorporates multitarget tracking (MTT) in a cluttered 

environment with missing measurements.  Linear programming (LP) relaxation is used to 

solve the cost assignment matrix.  The assignment costs are calculated via the Kalman 

filter likelihood function.  A constraint matrix is set up for the various batch lengths, and 

the assignment problem is solved via an LP package.  This study concentrates on using 

efficient techniques to eliminate many of the redundancies in generating the cost 

assignment matrix, and a single-scan, forward-looking filtering method is developed to 

further reduce the number of generated cost evaluations.   

The algorithm is generic and can be extended to the N-dimensional (ND) 

assignment problem.  The term ND refers to a number N of dimensions D where the first 

dimension refers to the tracker state estimates and covariance from the previous scan, and 

(N − 1) dimensions refers to the batch length in time for the subsequent scans.  To 

minimize computational requirements, a suboptimal version of the algorithm was 

developed and tested.  The suboptimal version is a faster implementation of the ND 

assignment algorithm, and results have been processed up to 16D.  Simulated results have 

been processed up to 4D for the standard implementation of the algorithm.  The efficient 

implementation utilizes (1) a two-dimensional (2D) LP module as a filtering procedure to 

extract measurements in clutter and (2) a skip factor of the length of the batch in 

processing the ND assignment.  The standard implementation processes the ND 

assignment and keeps only the first scan’s measurement of the batch, with the procedure 

repeated for consecutive scans via a sliding batch.   
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Comparisons are performed for various cases.  Test data are generated in a 

cluttered environment via simulation and processed with various clutter parameter and 

batch settings.  In this study, only simulations with linear motion model targets were 

considered, and the test data simulate detections obtained in a passive sonar environment 

for target crossings.  Monte Carlo runs are conducted for 100 trials for the various cases.  

The results show that the suboptimal but fast implementation tracked correctly through 

long-duration crossings in a much larger percentage of the trials—over 90%—than the 

standard implementation—less than 30% of the trials. 

A. BACKGROUND 

A passive line array in a typical ocean environment detects large vessels such as 

tankers and freighters at a long distance, so that contact information is generally 

“bearings only.”  When two of these distant contacts cross in bearing, the crossing 

duration can be on the order of minutes.  During the crossing, if the contacts are not of 

approximately equal signal-to-noise ratio (SNR), detections will be assigned to the higher 

SNR contact, and the lower SNR track will be lost.  For contacts that have equal 

probability of detection (PD), Willett et al. [1] have recently shown that the estimated 

tracks generated with a standard assignment model exhibit a repulsion behavior during 

the crossing that violates the expected behavior of these large contacts, i.e., that they are 

known to travel at constant course and speed and cannot make sudden changes because of 

their size.  This repulsion behavior causes problems downstream for algorithms that 

require state estimates to be consistent with contact trajectory. 

This study concentrates on utilizing a batch-style algorithm to track targets with 

equal PD in a long-duration crossing.  MDA techniques (generally batch-oriented) are 

used to investigate tracking of long-duration crossings.  Willet et al. [1] explored the use 

of batch-oriented tracking algorithms for the linear crossing case.  The algorithms 

discussed in this thesis can be generalized to N dimensions.  Solving this N-dimensional 

batch assignment is considered to be “NP hard” (where NP means nondeterministic 

polynomial time) for the case in which the dimensional value N ≥ 3; therefore, linear 

programming relaxation techniques are used.  An off-the-shelf software package 

(LP_SOLVE) [2], [3] is used to solve the objective function for the assignment problem.  
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Three algorithms—a modified probabilistic multi-hypothesis tracker (PMHT), a multi-

hypothesis tracker (MHT), and an MHT with rollout—were investigated and tested in [1], 

and those simulations and test results  are the foundation for the simulated results in this 

study. 

In the passive sonar environment, the contact detections from a line array are 

processed in sequence by a beamformer and a detector and subsequently sent to 

postprocessing algorithms such as tracking and classification algorithms.  Tracks are then 

formed for the postdetection data and sent to other postprocessing algorithms that require 

tracks as inputs, such as target motion analysis (TMA) algorithms [4], [5], [6].  In the 

scope of this thesis, simulations are developed that represent the postbeamformer output 

of a detector for a line array of hydrophones.  

A beamformer [7], [8] is essentially a transformation from the hydrophone’s or 

element’s “time” space to “bearing” space (i.e., beam angle or conical) space.  In this 

thesis, a line array of elements is considered.  A beamformer from a line array of 

elements produces a fixed number of beams, based on directional angles (bearings), by 

delaying and summing the time series from each element.  A line array has only a single 

dimension for its observation space, which is its conical beam space.  The outputs of the 

beamformer are sent to a detection process that will filter and normalize the data to 

eliminate the unneeded frequency ranges and preserve the ranges of interest.  The 

detector outputs are also assumed to be normalized spatially to have a constant noise 

background.  It is assumed in this study that the outputs of the detector are peak-picked.  

A peak-picked value is any measurement in the detector output above a preselected 

threshold.  Because the beamformer has a fixed number of beams, the peak-picked values 

from the detector provide only discrete measurements.  These discrete measurements are 

interpolated based on amplitude or other criteria to provide a finer estimate of the 

measurements at each scan.  These fine measurements will be sent to a tracking 

algorithm.   

The crossing target case considered is the long-duration crossing following a 

linear trajectory.  Test results are processed via Monte Carlo simulation for various 

clutter levels and various batch lengths. 
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B. REVIEW OF BATCH-ORIENTED MTT ALGORITHMS 

Recent developments in MTT and data fusion technologies are all pointing to the 

need to include batch frames of data in order to achieve optimal performance.  The 

current batch-oriented MTT algorithms include four classes—the PMHT, the MHT, the 

batch-oriented joint probabilistic data association (JPDA) tracker, and the MDA tracker.  

The PMHT developed by Streit and Luginbuhl [9], [10] is one batch-oriented algorithm 

that has shown promise for passive sonar and other applications.  However, the PMHT 

does not directly produce accurate error covariance matrices for the track estimates; a 

separate computation is required [1].  The MHT, as originally proposed by Reid [11], has 

a batch-oriented framework where tracks are constructed based on enumeration of all 

possible measurement-to-track association hypotheses along a batch.  As time evolves, 

the number of tracks grows exponentially, based on new measurement arrivals with each 

scan.  For practical implementation, current MHT implementations are suboptimal [12] 

because of computational processing and memory limitations associated with using fixed-

size batch lengths.  To limit the exponential growth of the number of tracks, even with a 

fixed batch length, ad hoc logic is used to prune tracks that are infeasible and meet 

certain criteria at a subsequent scan.  This type of deferred decision logic can only be 

applied when using a batch-style tracker.  The JPDA algorithm [13, pp. 310–319], [14] is 

a true multitarget tracking algorithm that produces consistent state estimates (i.e., 

accurate state and covariance estimates), but batch extensions [15], [16], [17] are still 

very limited (batch lengths of less than three scans) in the current state of the art.  

Further, the current version of the algorithm is prone to track segmentation, because of 

the track coalescence effect of PDA style trackers [18].  In PDA-style trackers, the tracks 

tend to merge, i.e., coalesce, as they cross, which requires initialization of a new track to 

replace the segment not tracked past the crossing.  The MDA algorithm [19], [20] utilizes 

an optimization framework, and an enumeration of all of the possible measurement-to-

track costs is calculated along the batch.  Cost minimization is performed via several 

techniques.  Lagrangian relaxation is used in [21], whereas the interior point linear 

programming is used in [22].  In [2], a mixed integer linear programming (LP) relaxation 

method is utilized to minimize the assignment cost matrix with an open source solver, 

LP_SOLVE [3].  The MDA framework is based on 0-1 integer assignments as originally 
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proposed in [23] via 0-1 integer linear programming, where tracks are given discrete 

assignments with one measurement per scan and are not allowed to share measurements, 

based on explicit constraints placed on the optimization.  An LP-based method to produce 

mixed integer assignments is explored in [24].  The current work will investigate an 

implementation of the MDA algorithm that uses linear programming and incorporates 

longer batch lengths into this framework.  The motivation for longer batch lengths is the 

premise that extending the batch length to cover the tracks for periods before and after 

the crossing period will aid in the long-duration crossing target problem by providing 

enough data on the contact positions to better predict the correct trajectories.  This 

algorithm will be analyzed with simulated results related to the passive sonar, long-

duration crossing tracks problem.  A suboptimal method is also developed to reduce the 

computational load of the algorithm—by reducing the number of cost evaluations—to 

further increase the batch length.   

This thesis is organized as follows.  In Chapter II, the two algorithms are 

described and the motion model and measurement model assumptions are formulated.  

An implementation of the MDA algorithm is presented as Algorithm I.  The 2D-ND 

MDA algorithm, which is a more efficient—and therefore faster—version, is presented as 

Algorithm II.  In Chapter III, which presents the results, the two algorithms are applied to 

the long-duration crossing target problem for a passive sonar line array.  Simulation 

results are presented for various test cases. 
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II. ALGORITHM DESCRIPTION 

A. MOTION MODEL ASSUMPTIONS 

The true positional state vector for a contact at time scan ts+1 is given by 

1

( )
( )

( )
s

s
s

x t
t

x t+
 

=  
 

x A


, (1) 

where t is the time of the scan, s is the scan index of the original data, and A is the state 

transition matrix of the system. 

1

0 1

T 
=  
 

A , (2)
 

where T is the scan period.   

B. MEASUREMENT MODEL ASSUMPTIONS 

The measurement model consists of received measurements normally distributed 

about the fractional beam space x. 

( ) ( ) ( )s s s rz t x t w t σ= + , (3) 

2
rR σ= , (4) 

where z(ts) is the linear measurement position at time scan ts, w is the white Gaussian 

random noise at time scan ts, σr is the standard deviation of the measurement noise, and R 

is the variance of the measurement noise.  

The clutter measurements are assumed to have a Poisson random variable 

distribution with spatial clutter density parameter λ.  The contact’s probability of 

detection PD is fixed, and spatial clutter density parameter λ is varied for the simulated 

results. 
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C. ALGORITHM I:  MDA ALGORITHM 

1. Overview of the MDA Algorithm 

An overview of the MDA algorithm is provided as a flowchart in Figure 1.  The 

flow of the modules is based on [19] and [20], except for the LP_Assign section, which is 

based here on LP relaxation instead of the Lagrangian relaxation technique.  In this study, 

it is assumed that the tracks are already initialized, where prior track estimates are known.  

Based on the simulated data, the tracks are initiated on the first scan and the algorithm 

processes the subsequent scans based on the initiated tracks via a sliding batch length (N 

− 1).  No track management functions, such as dropping, pruning, or merging tracks, are 

considered in this study.  No new tracks will be initiated subsequently after the first scan.  

Much of the processing for an MDA-style algorithm takes place in the GenCost and 

LP_Assign sections of Figure 1.  The GenCost section computes the Kalman filter 

likelihoods for every possible combination of measurement-to-track associations per scan 

for the entire (N − 1) batch length.  It also accounts for missing measurements per scan 

for the entire batch length per track.  This study concentrates largely on the GenCost 

section of the algorithm and eliminates many of the deficiencies of this module.  The 

LP_Assign section performs the actual measurement-to-track assignment via LP 

relaxation.  This assignment can be performed via various methods such as Lagrangian 

relaxation, interior point linear programming, and integer linear programming [2], [21]-

[24].  This study employs linear programming relaxation via an available open source 

solver, LP_SOLVE [3]. 
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Figure 1.   Overview of MDA tracking algorithm. 

2. Track Initialization 

The track initialization function initializes a track based on known input 

parameters such as initial target (i.e., contact) position 
0

( )sx t and rate 
0

( )sx t .  As part of 

this study, the tracks are initialized on the initial simulated state estimates based on the 

motion model assumptions.  The rate term 
0

( )sx t  is set to 0 for the initialized track’s 

state.  This function is performed at the first scan. 

(Data received) 
Measurements per  

scan for a batch (N − 1) in 
time forward 

Generate costs 
for each track for 

every measurement 
per scan in the batch  

Solve for best 
measurement-to-track 

assignment via  
linear programming  

relaxation 

Update states via  
Kalman filter for  

current scan 

Initialization for new 
 tracks 

Process next scan 

GenCost 

LP_Assign 
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3. Cost Generation 

The generation of the cost evaluations used for the objective function of the MDA 

algorithm was analyzed for efficiency in this research, and the resulting GenCost module 

is described here in detail.  Cost evaluations are calculated based on all possible 

measurement-to-track assignment hypotheses including the missing measurement along a 

batch.  The cost evaluations are obtained by the Kalman filter negative log likelihood 

calculation.  For each track, a missing measurement is also accounted for in every scan of 

the batch.  Note that the following prediction equations are used only to compute the 

likelihoods.  At time tn, the start of each batch, the state estimates and covariance for each 

track from the prior scan are used and the negative log likelihoods are cumulated along 

the batch.  These prior state estimates and covariances are from the Kalman filter update 

section of this thesis. 

Equations (5) through (13) are from standard Kalman filter theory.  The Kalman 

filter time update comprises the state prediction, given by Equation (5) and the state 

prediction covariance, given by Equation (6). 

1( ) ( )n nt t+ =x Ax , (5) 

1( ) ( )n nt t+ ′= +P AP A Q , (6) 

where the index n is the scan index in the batch, P
~

 is the predicted state prediction 

covariance, P is the state prediction covariance in current time, and Q is the covariance of 

the discrete-time process as defined in Equation (7). 

(0)P is the initial covariance matrix set at 

0

0

0

0

2
2

2
2

(0)

f
f

f
f

T

T

σ
σ

σ
σ

 
 
 =
 
 
 

P ,  

where the Kalman filter’s initial function value variance 
0

2
fσ  is a parameter and is the 

same for all tracks. 
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The covariance matrix Q is based on a discrete white noise acceleration model 

from [25, p. 274] and given by Equation (7): 

4 3

2

3
2

4 2

2

q

T T

T
T

σ

 
 
 =
 
  

Q . (7) 

The measurement prediction is given by 

1 1ˆ( ) ( )n nz t t+ += Cx , (8) 

where C = [1   0] is the measurement matrix, and σq is the standard deviation used in the 

process noise model. 

The Kalman filter measurement update is computed using the innovation 

covariance estimate ( )1+ntS , filter gain estimate K(tn+1), measurement residual ( )1+ntν , 

updated state estimate ( )1+itx , and the updated state covariance ( )1+itP , given by 

Equations (9) through (13), respectively. 

1 1( ) ( )n nt t R+ + ′= +S CP C , (9) 

1
1 1 1( ) ( ) ( )n n nt t t −

+ + +′=K P C S , (10) 

1 1 1ˆ( ) ( ) ( )n n nt z t z tν + + += − , (11) 

1 1 1 1( ) ( ) ( ) ( )i n n nt t t tν+ + + += +x x K , (12) 

1 1 1 1 1( ) ( ) ( ) ( ) ( )i i n n nt t t t t+ + + + + ′= −P P K S K . (13) 

The cost calculation [24], [26] is performed via the following function for the 

Kalman filter likelihood Λ: 

1

2
11

1 1 1 1

2 ( )1
( ) ( ) ( ) ( ) ( ) ln

2
e n

n n n n n
D

t
t t t t t

P

λ π
ν ν +−

+ + + +

 
 ′Λ = Λ + +
 
  

S
S . (14) 

 

To process a missing measurement, a penalty is imposed where 
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1( ) ( ) ln(1 )n n Dt t P+Λ = Λ − − . (15) 

Note that eλ  is the assumed clutter density used by the tracking algorithm in 

Equation (14).  The clutter density parameter differs from λ  in the measurement model 

section only in that eλ  is a fixed parameter whereas λ  varies with the simulation 

scenario.  Note that, in the results section, the case is examined where eλ  equals λ , i.e., 

the matched case.  If a missing measurement is being processed, only the Kalman time 

update Equations (5) through (8) and (15) are performed.  This set of equations—

Equations (5) through (15)—is used to calculate the Kalman filter likelihoods Λ that 

serve as the costs forming the objective function for the MDA algorithm.  The basic 

computational unit for an MDA algorithm is a single Kalman filter update used to 

calculate the negative log likelihoods.  The details of the negative log likelihood function 

are described in [24] and [26].  Reference [21] provides further details on the cost 

calculation methodology used for the MDA algorithm.  The calculations of Equations (5) 

and (6) and (8) through (14) are performed for every track at each scan along the batch 

for all possible combinations of measurement-to-track associations.  For missing 

measurements, Equations (5), (6), (8), and (15) are calculated.  Note that Equations (14) 

and (15) are used for processing actual measurements or missing measurements 

respectively.  A single likelihood represents a possible trajectory for a track along a 

batch.  Enumeration of all measurement-to-track (including missing measurement) 

likelihoods needs to be calculated per track for the entire batch length.  The number of 

costs calculated per track is given by Equation (16) for a fixed number of measurements 

per scan along a batch. 

Number of costs (c) = 1NM −  or 
1

1

N

n
n

M
−

=
∏ , (16) 

where M is the fixed number of measurements per scan n, including the missing 

measurement, and (N − 1) is the batch length.  The total number of costs is given by 

Total number of costs = 1NM L−  or 
1

1

N

n
n

L M
−

=

⋅∏ , (17) 

where L is the number of tracks. 
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The total number of Kalman filters (KF) to process for all tracks in a batch is 

given by 

Total number of KF = 1 ( 1)NM L N− −  or 
1

1

( 1)
N

n
n

L N M
−

=

⋅ − ⋅∏ . (18) 

The Kalman filters used to compute the likelihoods are the basic unit as far as 

computational costs for a MDA-style algorithm, since it must be performed numerous 

times to evaluate all possible combinations of measurement-to-track costs.  Note that 

Equations (16) through (18) apply only to cases with a fixed number of measurements per 

scan and can be used for rough algorithm loading calculations.   

If the number of measurements changes from scan to scan, as normally happens, 

the cost tree and the number of Kalman filters are calculated using generic equations.  

The number of costs for any number of measurements and the number of Kalman filters 

per track are calculated using Equations (19) and (20), respectively. 

Number of costs (c) = 
1

1

N

n
n

m
−

=
∏ , (19) 

Number of KF updates = 
1

1

( 1)
N

n
n

N m
−

=

− ∏ , (20) 

where m is the varying number of measurements for scan n  from 1 to (N − 1). 

Consider an example of two tracks with a batch length of (N − 1) of three scans 

with three measurements in each scan, as shown in Figure 2.  This is a 4D Assignment 

with a batch length of three.  The measurements include the missing measurement, where 

there are only two actual measurements.  The topology on the left represents the track 

paths for Track 1 and on the right for Track 2.  The measurements are labeled from one to 

nine for the three measurements and three scans of data as shown.  Note that 

measurements 1, 4, and 7 are labeled as missing measurements.  From Equation (16), 

there are 33 or 27 possible paths for this specific example per track.  As mentioned in 

Equation (18), the total number of Kalman filter updates to process is 1 ( 1)NM L N− − .  In 

this case, it would require 162 Kalman filters to generate a total of 54 cost values c in a 

single batch for the two tracks.  
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It is important to note that there is no gating procedure in Algorithm I.  In the 

MDA procedure, as outlined in [19] and [21], there is no gating involved, with every 

measurement-to-track hypotheses calculated, as is the case for Algorithm I.  To improve 

processing speed of MDA-style algorithms gating can be performed as shown in [27], 

using a clustering technique along the batch.  Any type of gating used makes the 

association problem suboptimal, especially when processing increasing time depths.  A 

suboptimal gating technique based on a 2D-ND MDA algorithm is proposed for faster 

processing.  The gating procedure is described in Section D.3 for Algorithm II. 

 

1 2 3

4 5 6

7 8 9

1 2

1 2 3

4 5 6

7 8 9

1 2Tracks

Scan 1

Scan 2

Scan 3

Missing Measurement

1 2 3

4 5 6

7 8 9

1 2

1 2 3

4 5 6

7 8 9

1 2Tracks

Scan 1

Scan 2

Scan 3

Missing Measurement

 

Figure 2.   Example of 4D assignment case cost mapping with two tracks and three 
measurements, including the missing measurement. 

In Figure 3, the unraveled track paths are shown for Track 1; the measurement 

indices in this figure are labeled as in Figure 2.  Notice the tree structure of the different  

paths from the track to the end of the batch.  The main trunk of the tree is at the bottom 

where the tracks start from the first scan, and the canopy, fringe branches are towards the 

last scan. 
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1 2 3

1

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

Scan 1

Scan 2

Scan 3

Track

1 2 3

1

4 5 6 4 5 6 4 5 6

7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

1 2 3

1

4 5 64 5 6 4 5 64 5 6 4 5 64 5 6

7 8 9 7 8 9 7 8 97 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 97 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 97 8 9 7 8 9 7 8 9

Scan 1

Scan 2

Scan 3

Track

 

Figure 3.   Example of 4D cost tree mapping for Track 1. 

Table 1 provides an enumeration of the binary value indexes ρ for obtaining the 

cost evaluation tree depicted in Figure 3.   As previously mentioned, for the 4D example, 

27 cost terms c are calculated per track.  The top row represents the numbered 

measurements depicted in Figure 2.  The leftmost column represents the associated 

binary decision values ρ to the costs c.  The four subscripted numerals to the decision 

term ρ represent an N- tuple path along the batch for a given track.  In Table 1, the first 

term in the subscript represents Track 1’s costs and associated decision terms ρ, or the 

index of the first dimension.  The second term represents the measurement index in the 

first scan, the third term represents the measurement index in the second scan, and so on.  

A Kalman filter calculation is represented by a value of 1 in Table 1, and for this 4D 

example there are 81 filters used per track. 

These costs enforce the underlying assignment model where the constraints 

imposed require that only one measurement is associated with a track per scan along a 

batch and that multiple tracks can be associated with the missing measurement at the 

same scan.  This optimization procedure is described for Algorithm I in Section C.5. 
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Measurement Index 
 1 2 3 4 5 6 7 8 9 

1000ρ  1   1   1   

1001ρ  1   1    1  

1002ρ  1   1     1 

1010ρ  1    1  1   

1011ρ  1    1   1  

1012ρ  1    1    1 

1020ρ  1     1 1   

1021ρ  1     1  1  

1022ρ  1     1   1 

1100ρ   1  1   1   

1101ρ   1  1    1  

1102ρ   1  1     1 

1110ρ   1   1  1   

1111ρ   1   1   1  

1112ρ   1   1    1 

1112ρ   1    1 1   

1120ρ   1    1  1  

1121ρ   1    1   1 

1122ρ    1 1   1   

1200ρ    1 1    1  

1201ρ    1 1     1 

1202ρ    1  1  1   

1211ρ    1  1   1  

1212ρ    1  1    1 

1220ρ    1   1 1   

1221ρ    1   1  1  

1222ρ    1   1   1 

Table 1.   Example of 4D cost enumeration for Track 1:  three measurements per scan. 
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In Table 2, the number of calculated costs c for a single track for various N 

dimensional assignments from 2D to 10D assignment and number of measurements from 

1 to 10 per scan are provided.  

 

N \ M 1 2 3 4 5 6 7 8 9 10
2 1 2 3 4 5 6 7 8 9 10
3 1 4 9 16 25 36 49 64 81 100
4 1 8 27 64 125 216 343 512 729 1000
5 1 16 81 256 625 1296 2401 4096 6561 10000
6 1 32 243 1024 3125 7776 16807 32768 59049 100000
7 1 64 729 4096 15625 46656 117649 262144 531441 1000000
8 1 128 2187 16384 78125 279936 823543 2097152 4782969 10000000
9 1 256 6561 65536 390625 1679616 5764801 16777216 43046721 1E+08

10 1 512 19683 262144 1953125 10077696 40353607 1.34E+08 3.87E+08 1E+09

Table 2.   Number of N-tuple cost evaluations c for various dimensions N with a fixed 
number of measurements M per scan. 

 

Table 3 provides the number of Kalman filters needed to generate the costs in 

Table 2. 

 

N \ M 1 2 3 4 5 6 7 8 9 10

2 1 2 3 4 5 6 7 8 9 10

3 2 8 18 32 50 72 98 128 162 200

4 3 24 81 192 375 648 1029 1536 2187 3000

5 4 64 324 1024 2500 5184 9604 16384 26244 40000

6 5 160 1215 5120 15625 38880 84035 163840 295245 500000

7 6 384 4374 24576 93750 279936 705894 1572864 3188646 6000000

8 7 896 15309 114688 546875 1959552 5764801 14680064 33480783 70000000

9 8 2048 52488 524288 3125000 13436928 46118408 1.34E+08 3.44E+08 8E+08

10 9 4608 177147 2359296 17578125 90699264 3.63E+08 1.21E+09 3.49E+09 9E+09
 

Table 3.   Number of Kalman filters needed to generate cost c for various 
dimensions N with a fixed number of measurements M per scan. 

 



 

 18

As noted in [27] and [28], the costs calculated using the GenCost function, or 

generating the Kalman filter negative log likelihood Λ, take up about 95% of the 

computational requirement of an MDA-style of algorithm.  In Table 3 for example, with 

nine measurements and 7D assignment, over three million Kalman filter updates need to 

be processed for a single track to generate all the costs in the batch.  As the number of 

tracks increase, the cost calculations and the number of Kalman filter updates to process 

increase linearly with the numbers from Tables 2 and 3, respectively.  If the cost 

generation function is taking up much of the computational resources, then it is beneficial 

to reduce the number of overall Kalman filter calculations along a batch per track.  Some 

of the cost generation inefficiencies can be eliminated because the Kalman filter negative 

log likelihoods have previously been calculated for the initial scans of the batch.  Storing 

a select set of previously processed cumulative likelihoods, prior track filter state 

estimates, and covariances makes these values available for reuse later in the processing, 

which results in significant computational savings without any effect on the overall 

algorithm.  The circled sections in Table 4 show the costs that are part of the main trunk 

of the tree that can be reused to calculate the canopy branches of the cost tree from Figure 

3.  It is observed that the number of links in the cost tree corresponds to the number of 

Kalman filters to process.  The main trunk sections are early in the batch, and the fringe 

branches, representing the number of cost evaluations, are toward the end of the batch.  

By using this technique, the number of Kalman filter updates to calculate in the 4D 

example decreases from 162 to 78 filters for the two example tracks, which is a 

significant savings without any impact on the integrity of the algorithm.  Note that the 

number of costs calculated for the objective function is still the same.  The reduction in 

the number of Kalman filters provides the computational savings to process the costs. 

The equation used to calculate the number of reduced Kalman filter (KF) updates 

for a fixed number of measurements M in a batch is given by the following special case 

of the geometric series and generation function, where M > 1: 

Number of reduced KF = 
1

1

N
n

n

M
−

=
  = 

1

NM M

M

−
−

. (21) 
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Measurement Index 

 1 2 3 4 5 6 7 8 9 

1000ρ  1   1   1   

1001ρ  1   1    1  

1002ρ  1   1     1 

1010ρ  1    1  1   

1011ρ  1    1   1  

1012ρ  1    1    1 

1020ρ  1     1 1   

1021ρ  1     1  1  

1022ρ  1     1   1 

1100ρ   1  1   1   

1101ρ   1  1    1  

1102ρ   1  1     1 

1110ρ   1   1  1   

1111ρ   1   1   1  

1112ρ   1   1    1 

1112ρ   1    1 1   

1120ρ   1    1  1  

1121ρ   1    1   1 

1122ρ    1 1   1   

1200ρ    1 1    1  

1201ρ    1 1     1 

1202ρ    1  1  1   

1211ρ    1  1   1  

1212ρ    1  1    1 

1220ρ    1   1 1   

1221ρ    1   1  1  

1222ρ    1   1   1 

Table 4.   Example 4D with calculated costs c:  circled sections are stored cost values. 
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Even when processing a missing measurement, a Kalman filter time update must 

be performed to calculate the state estimates for the next scan.  The number of Kalman 

time updates to process missing measurements is given by 

Number of reduced KF time updates = 
1

1

1

N
n

n

M
−

−

=
 =

1 1

1

NM

M

− −
−

. (22) 

The total number of full Kalman filters to process real measurements along a 

batch is given by 

Number of reduced full KF = 
1

1

1

( )
N

n n

n

M M
−

−

=

−  = 
1

1
1

N NM M

M

−− −
−

 = 1 1NM − − . (23) 

The generic equation to calculate the number of reduced Kalman filters for any 

number of measurements in a batch, for a single track is given by 

Number of reduced KF = 
1

2 1

kN

n
k n

m
−

= =
∏ , (24) 

where mn is the number of measurements for scan n from 1 to (k − 1), and k is the 

dimensional assignment from 2 to N. 

Table 5 shows the number of Kalman filters required using the efficient 

methodology used in this study for N dimensions from 2D to 10D and a fixed number of 

measurements per scan, from 1 to 10.  From Table 3, as was mentioned previously in an 

example, with nine measurements and 7D assignment, over three million Kalman filters 

needed to be processed for a single track.  In Table 5, with the reduced number of 

Kalman filters with nine measurements and 7D assignment, the number of Kalman filters 

dramatically decreases to less than 600,000—a more than fivefold savings. 

Table 6 shows the savings in computation achieved with the reduced set of 

Kalman filters based on the efficient storage methodology.  This table gives the ratio of 

the number of Kalman filters for each case in Table 3—the full set—to the number of 

Kalman filters required for the same case in Table 5—the reduced set.  As is expected, as 

the N dimensional size and the number of measurements per scan increase, the 

computational savings significantly increase.  In the 10D case with 10 measurements per 

scan, there is an eightfold decrease in the number of Kalman filters computed. 
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N \ M 1 2 3 4 5 6 7 8 9 10

2 1 2 3 4 5 6 7 8 9 10
3 2 6 12 20 30 42 56 72 90 110
4 3 14 39 84 155 258 399 584 819 1110
5 4 30 120 340 780 1554 2800 4680 7380 11110
6 5 62 363 1364 3905 9330 19607 37448 66429 111110
7 6 126 1092 5460 19530 55986 137256 299592 597870 1111110
8 7 254 3279 21844 97655 335922 960799 2396744 5380839 11111110
9 8 510 9840 87380 488280 2015538 6725600 19173960 48427560 1.11E+08

10 9 1022 29523 349524 2441405 12093234 47079207 1.53E+08 4.36E+08 1.11E+09

Table 5.   Number of Kalman filters needed in reduced set where previously 
calculated costs c and filter outputs are stored for various dimensions N 

with a fixed number of measurements M per scan. 

 

N \ M 1 2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1 1
3 1 1.33 1.50 1.60 1.67 1.71 1.75 1.78 1.80 1.82
4 1 1.71 2.08 2.29 2.42 2.51 2.58 2.63 2.67 2.70
5 1 2.13 2.70 3.01 3.21 3.34 3.43 3.50 3.56 3.60
6 1 2.58 3.35 3.75 4.00 4.17 4.29 4.38 4.44 4.50
7 1 3.05 4.01 4.50 4.80 5.00 5.14 5.25 5.33 5.40
8 1 3.53 4.67 5.25 5.60 5.83 6.00 6.13 6.22 6.30
9 1 4.02 5.33 6.00 6.40 6.67 6.86 7.00 7.11 7.20

10 1 4.51 6.00 6.75 7.20 7.50 7.71 7.88 8.00 8.10

Table 6.   Ratio of number of Kalman filters calculated for full set (per Table 3) vs 
reduced set (per Table 5).  In both sets, N is the dimensional size, and there 

is a fixed number of measurements M per scan. 

 

The storage of previously calculated costs c and Kalman filter outputs is used in 

this version of MDA Algorithm I and in the suboptimal but faster Algorithm II. 
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4. Linear Programming Overview 

Once the costs c are obtained, based on an enumeration of N-tuple measurement-

to-track paths along a batch, the assignment of these costs-to-track can be performed via 

a variety of methods.  In [21], an efficient near-optimal algorithm is developed using a 

relaxation algorithm based on Lagrangian multipliers, with a modified Auction algorithm 

[29].  Other efficient methods are also currently available for solving the objective 

function for global constraint optimization problems [2].  Some of the other solutions 

were mentioned in Chapter I in the review of batch-oriented MTT algorithms.  There is 

also a variety of global optimization solvers commercially available or as open source 

software packages.  As part of this study, an open source package called LP_SOLVE [2], 

[3] is used to perform the linear global constraint optimization.  LP_SOLVE utilizes a 

mixed integer linear programming relaxation technique via the primal-dual method.  

Linear programming (LP) was originally developed by Dantzig [30] in 1947 and was 

initially used by the U.S. Air Force.  Currently, LP is used in a variety of fields to solve 

the linear global constraint optimization problem.  LP sets up the optimization 

formulation in the form of Ax = B, where A contains the associated N-tuple costs c, x 

contains the binary decision variable ρ, and B contains the associated constraint terms as 

outlined in this study.  A detailed description of LP is beyond the scope of this thesis, but 

the reader is referred to several texts [30], [31], [32] on this well-researched and much-

applied method.  The ND assignment operation is performed in the LP_Assign module of 

Figure 1, and objective formulation is outlined in the next section. 

5. ND Assignment 

The ND assignment refers to a batch length of (N − 1) scans where the first 

dimension represents the prior state estimates and covariance of a given track.  For 

example, a 16D assignment, or a batch length of 15 scans, is processed for each target.  

The ND assignment formulation follows Equations (25) and (26).  
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The objective function is given by 

1 2

1 2 1 2
1 2

1 1 2 2

min
n

i i i i i in ni i in
n n

mm m

i u i u i u

c
ρ

ρ
= = =
    



 , (25) 

where c is the N-tuple Kalman filter negative log likelihood, subject to the set of  

constraints defined as 

32

1 2
2 2 3 3

1
n

i i in
n n

m mm

i u i u i u

ρ
= = =

=   
    for  

1 11, 2,i m=   
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1 2
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1
n

i i in
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m mm

i u i u i u

ρ
= = =

=  
    for  

2 21, 2,i m=   (26) 

    

1 2

1 2
1 1 2 2 1

1

1
n

i i in
n n

mm m

i u i u i u

ρ
−

−

= = =

=   
    for  1, 2,

n ni m=  , 

where mn is the number of measurements for scan n from 1 to (N − 1).  The measurement 

index i ranges from un to mn, where un = 0, and n is the scan index.  Note that (un = 0) is 

the missing measurement.  The values of 
niiic 21
 are the N-tuple costs.  These costs are 

the cumulative Kalman filter negative log likelihoods for the batch, Λ , as obtained in the 

GenCost function.  The costs are minimized in Equation (25) subject to the constraints in 

Equation (26).  The constraints impose the requirement that at most one measurement is 

associated with a track per scan in a batch and multiple tracks can be associated with the 

missing measurement at the same scan.  In other words, each measurement-to-track 

assignment is exclusive per scan in the batch.  It is noted in [27] that the actual 

measurement-to-track assignment is a very efficient process and only takes 5% of the 

computational resources for the algorithm.  Once the measurement-to-track assignments 

are obtained, the next step, as shown in Figure 1, is to update the track’s state estimate via 

a standard Kalman filter as described in the next section. 
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6. Kalman Filter Update 

Once the measurement-to-track assignment is performed, a Kalman filter is used 

to update the state matrix for the next scan ts.  The filter process is performed via the 

Kalman filter state space Equations (5) through (13), calculated for each track at current 

scan ts with measurement z(t1) obtained for the track via the (LP_Assign) assignment 

function for the first scan of the batch.  Note that, in Equations (5) through (13), the scan 

index n represents the scan index in a batch, which is replaced in this step with s, the scan 

epoch index for the total number of scans. 

Note that an assignment of a missing measurement only performs the Kalman 

time update, Equations (5) through (8).  The filter is processed, and the cycle repeats for 

the next scan of data according to Figure 1. 

D. ALGORITHM II:  A FASTER, SUBOPTIMAL VERSION VIA 2D-ND MDA 

1. Overview of Algorithm II 

The primary goal of this research is to extend the batch length size of the tracker 

with the premise that it will aid in the long-duration target crossings problem.  In 

Algorithm I, it is shown that by increasing the dimensional size, the number of Kalman 

filters to process the cost evaluations increases exponentially.  In [27], it is noted that 

even though the assignment function of the MDA is the most important part of the 

algorithm, it accounts for only 5% of the computational resources.  About 95% of the 

computational load is due to the generation of the cost evaluations, to form the objective 

function, given by Equation (25).   In Algorithm I, the number of cost evaluations 

remained the optimal size with a full enumeration of all N-tuple pairwise measurement-

to-track decisions along the batch were calculated.  In [27], a fast MDA-style algorithm is 

developed by using a clustering process to reduce the number of cost evaluations.  This is 

a type of gating procedure along a batch based on a clustering approach.  As part of this 

research, in Algorithm II, a method is proposed to reduce the cost evaluations by gating 

the tracks and identifying single target and multiple target groupings.   The tracking of 

these groups is performed with either a single scan (2D single-target) or multiscan (ND 
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multitarget) multidimensional assignment.  An overview of Algorithm II of MDA is 

shown in Figure 4.  When multiple tracks are within a gate, the algorithm reduces the 

number of cost evaluations by employing a filtering of the measurements by a 2D LP 

assignment via a forward-looking filter along the batch.  These filtered measurements are 

reprocessed by an ND LP assignment MDA.  When tracks are outside the vicinity of any 

other tracks—basically, a single target track—the algorithm reverts to a 2D algorithm as 

outlined in Algorithm I, with N equal to 2. 

The 2D assignment (single-target mode) is very efficient due to this linearity in 

the number of measurements to tracks.  For example, if 400 scans were processed with 

two tracks and three measurements per scan, a total of 2400 cost evaluations or Kalman 

filters are computed for this scenario.  In the 4D example given in the Algorithm I section 

of the thesis, with two tracks, three measurements per scan, with 400 scans to be 

processed, a total of 21,600 cost decisions or 31,200 Kalman filters need to be calculated 

for this example.  In this case, the 4D version is 13 times more expensive than the 2D 

version with three measurements per scan.  This savings is the rationale for using the 2D 

LP when in single target mode.  When there is no contention among close-by tracks, 

which is the single target case, a 2D assignment is a cost-efficient tracker.  It is also noted 

that the 2D assignment degrades in performance as the clutter level increases.  In 

simulation, the 2D assignment also tended to exhibit the track repulsion behavior for 

long-duration crossing targets more than versions with longer batch lengths. 

It is emphasized that in the multiscan, multitarget (ND) mode in Algorithm II, the 

Kalman filter processes the entire batch and then skips forward to process the next batch 

of data out of the gate.  This further increases the speed of the algorithm over the 

processing from scan to scan described for Algorithm I.  This part of the processing is 

described in Section D.5 for Algorithm II. 
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Figure 4.   Overview of Algorithm II:  2D-ND LP MDA tracking algorithm. 
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2. Track Initialization 

The track initialization functionality is the same as described in Algorithm I.  This 

function is performed at the first scan, and states are projected forward for the next scan. 

3. Track Gating 

When multiple tracks are within a gate, there are two possible outcomes from 

Algorithm II.  When the tracks are in gate proximity, the 2D-ND LP tracker (multitarget 

tracking) is employed to process the multiple tracks.  When the tracks are separated, 

outside any tracker gates, the 2D LP tracker (single-target tracking) is performed.  The 

gating procedure can be performed either spatially or temporally.  For example, a spatial 

gating can be performed between multiple tracks using the Kalman filter negative log 

likelihoods described in Algorithm I with an appropriately set gating threshold.  In this 

research, a time-dependent gating procedure is used.  Because the goal of this study is the 

long-duration crossing, a time window is identified in which the 2D-ND LP tracker is 

processed.  The 2D LP tracker is used for all scans before and after the window, which 

begins with time scan tn_start and ends with time scan tn_end.   

The pseudo code for the 2D LP tracker (single-target case) is as follows: 

if _n n startt t<  or _n n endt t> . 

The pseudo code for the 2D-ND LP tracker (multitarget case) is as follows: 

else ( _n n startt t≥  and _n n endt t≤ ). 

A diagram of the time-dependent track gating is given in Figure 5.  This 

methodology is used for consistency in the simulated results given in Chapter III.  A 

spatial gate can be easily interchanged as part of the gating procedure within this 

paradigm.  Tracks that are about to cross can also be identified in time via extrapolation 

using a linear least squares fit along the track or another procedure.  This research uses 

fixed time scans for switching between the two paths, as shown in the flow diagram in 

Figure 4.  
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Figure 5.   Track gate switching is performed at time scans tn start and tn end.  The 2D LP 
tracker (single-target, single-scan) is used prior to tn_start and after tn_end.  The 

2D-ND LP tracker (multitarget, batch) is used between time scans tn_start and tn_end. 

4. 2D LP Assignment Single Scan 

When tracks are outside of a gate, a 2D LP is used to update the state estimates 

and the next scan is processed.  The costs are calculated as in Algorithm I outlined in the 

Cost Generation section.  The 2D assignment is performed as outlined in the ND 

assignment section of Algorithm I with N equal to 2.  The modules GenCost_2D and 

2DLP_Assign shown in Figure 4 are special situations of the generic GenCost and 

LP_Assign modules as described in Algorithm I.  Note that in Tables 2 and 5 that the 

number of cost evaluations and/or Kalman filters to process is linear with the number of 

measurements M  (including missing measurement) in the scan for the 2D assignment.   

5. 2D-ND LP Assignment Multiscan 

When tracks are inside of a gate, a 2D-ND LP is processed.  The modules shown 

in Figure 4 labeled GenCost_2D_FWD, 2DLP_Assign_FWD, GenCost_ND, and 

ND_LP_Assign account for the main processing chain of this algorithm.   
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In the GenCost_2D_FWD, and 2DLP_Assign_FWD, a 2D LP filter is run (N − 1) 

scans forward in time.  This process is similar to the section in Algorithm II for the 2D 

LP Assignment for a single scan.  The measurements that were assigned to the track are 

saved to be reprocessed by ND LP assignment.  During the assignment process, it is 

noted that a track received an actual measurement or a missing measurement.  By 

following this step, the number of measurements nm processed by the ND Assignment 

becomes equal to or less than the number of tracks L .  In most circumstances, the number of 

tracks is less than the number of measurements. Note that using the 2D assignment as a filter, 

there are certain advantages especially when processing in low clutter.  First, if all the tracks 

are assigned an actual measurement on a particular scan in the batch, this is duly noted and 

the missing measurement need not be processed for that scan.  Second, if none of the tracks is 

assigned a real measurement, then only the missing measurement needs to be processed for 

the scan.  Third, as the clutter level λ increases, the Kalman filter calculation costs are 

absorbed by the 2D assignment, which is linear with the number of measurements.  The 

filtered data sent to the ND Assignment are always less than or equal to the number of tracks 

no matter how large the clutter level.  This property has benefits and disadvantages.  In dense 

clutter, this part of the algorithm is very fast but performance also degrades.  Note that the 2D 

assignment process discussed in this section is only used as a filtering process.  The state 

estimates derived from this process are not used at the end of each batch.  The 2D assignment 

filters the batch of data and forms a new filtered batch of data to be reprocessed by the ND 

assignment. 

In the GenCost_ND, and ND_LP_Assign sections, these modules are similar to 

the GenCost and LP_Assign shown in Figure 1 of Algorithm I.  The difference is in 

Algorithm I, the missing measurement is accounted on every scan of the batch.  In the 

ND assignment in Algorithm II, the 2D assignment provides an index if a missing 

measurement or a real measurement is processed for a particular scan.  Therefore, the 

missing measurement need not be processed for every scan in the batch. By filtering with 

the 2D assignment, the number of 2D LP filtered measurements ln, to process with the 

ND assignment is less than or equal to the number of tracks L .  The ND assignment 

formulation for Algorithm II has the same set of Equations (25) and (26) as in Algorithm I. 
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The objective function in Equation (25) is minimized subject to the constraints in 

Equation (26).  The binary value nu  is the measurement index value filtered by the 2D LP 

forward filter.  If nu equals 0, a missing measurement is processed; otherwise, the index is 

1, representing the first real measurement.  The value nm  equal to ln, is the number of 2D 

LP filtered measurements for scan n from 1 to (N − 1).  The measurement index i  ranges 

from 0—the missing measurement—to ( nm  = ln), where ln is the number of 

measurements filtered by the 2D forward filter per scan, and n is the scan index. 

The maximum number of costs calculated per track for the 2D-ND LP MDA for a 

fixed number of measurements per scan in a batch is given by Equation (27): 

Number of costs ( c ) = 1( 1) NM N L −− + , (27) 

where M is the number of measurements per scan including the missing measurement, 

(N − 1) is the batch length, and L  is the number of tracks.  The total number of costs is 

given by Equation (28): 

Total number of costs = 1( ( 1) )NM N L L−− + . (28) 

The total number of Kalman filters needed to process a single track in a batch is 

given by Equation (29): 

Number of KF in reduced set = 
1

1

( 1)
N

n

n

M N L
−

=

− + , 

or (29) 

Number of KF in reduced set = ( 1)
1

NL L
M N

L

−− +
−

, 

where L > 1 in the generation function.   

The generic equations used to calculate the number of costs and the number of 

Kalman filters in the reduced set for any number of measurements in a batch for a single 

track are given as Equations (30) and (31), respectively. 

Number of costs ( c ) = 
11

1 1

NN

n n
n n

m l
−−

= =

+ ∏ , (30) 
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Number of reduced KF = 
11

1 2 1

kN N

n n
n k n

m l
−−

= = =

+ ∏ , (31) 

where nl  is the number of 2D LP extracted measurements for scan n  from 1 to ( 1k − ) 

and k  is the dimensional assignment from 2 to N.  Note that nl L≤  where L is the 

number of tracks for any scan n .   

6. Kalman Filter Update Multiscan 

A Kalman filter update is performed for every scan in the batch based on the 

measurements obtained from the ND assignment.  Note that this is a different operation 

than Algorithm I, where a sliding batch is employed and only the first value in the batch 

is used to update the Kalman filter.  In Algorithm II, the Kalman filter processes the 

entire batch, and skips forward to process the next batch of data until the track is out of 

the gate. The Kalman filter follows Equations (5) through (13) for scan index st . 

7. Example 

As an example, consider a case with 500 scans, two tracks ( 2L = ), and three 

measurements including the missing measurement ( M = 3) that uses a 6D assignment 

(N = 6).  The tracks are separated during the first 200 scans, crossing during the next 100 

scans, and separated again during the last 200 scans.  A diagram of this example is shown 

in Figure 6.  Using Algorithm I, the total number of Kalman filters (KF) for the separated 

tracks, i.e., for 400 scans, in this case is calculated as Num_KF_M_N ∗ L ∗ Num_scan, 

where Num_KF_M_N is the number of KFs from Table 5 for given values of M and N, 

and Num_scan is 2 ∗ 200 scans, or 400.  Thus, the total number of KFs for the separated 

tracks is 363 ∗ 2 ∗ 400, or 290,400 KF.  From Table 2, the total number of cost 

evaluations is calculated as cost_M_N, where cost_M_N is the number of costs from 

Table 2 for given values of M and N.  Thus, cost_M_N = c ∗ L ∗ Num_scan = 243 ∗ 2 ∗ 

400, or 194,400 cost evaluations. 
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Figure 6.   Example of 6D assignment for two-target case with 500 scans 
and target crossings for 100 scans. 

Using Algorithm II for the single-target section, where tracks are outside the gate 

of Figure 4 (i.e., separated), the total number of KFs for the separated tracks is calculated 

as Num_KF_2D_M_N ∗ L ∗ Num_scan, where Num_KF_2D_M_N is the number of KFs 

from Table 5 for given values of M and N, and Num_scan is 400.  Thus, the total number 

of KFs for the separated tracks using Algorithm II is 3 ∗ 2 ∗ 400, or 2400 KFs.  From 

Table 2, the total number of cost evaluations is calculated as cost_2D_M_N, where 

cost_2D_M_N is the number of costs from Table 2 for given values of M and N.  Thus, 

cost_2D_M_N = c ∗ L ∗ Num_scan = is 3 ∗ 2 ∗ 400, or 2400 cost evaluations.  Thus, 

based on the ratio of the total number of KFs, Algorithm II is 121 times faster than 

Algorithm I for this case. 

Using Algorithm I for the multitarget case, the tracks are within a gate between 

scans 200 and 300, i.e., Num_scan = 100.  From Table 5, the number of Kalman filters to 

process for Algorithm I is Num_KF_M_N ∗ L ∗ Num_scan = 363 ∗ 2 ∗ 100, or 72,600 
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KF.  From Table 2, the total number of cost evaluations cost_M_N is calculated as c ∗ L ∗ 

Num_scan = 243 ∗ 2 ∗ 100, or 48,600 cost evaluations.  

Using Algorithm II for the multitarget case requires two steps to calculate the 

number of Kalman filters.  The 2D LP function is used for forward filtering, and then the 

ND LP function is used to calculate the cost based on the 2D LP filtered output.  Thus, 

the total number of KFs for the multitarget case = (Num_KF_2D_M_N ∗ L * Num_scan) 

+ (Num_KF_6D_L_N ∗ L ∗ Num_scan/(N − 1)) = (3 ∗ 2 ∗ 100) + (62 ∗ 2 ∗ 20), or 3080 

KFs. Thus, based on the ratio of the total number of KFs, Algorithm II is about 23 times 

faster than Algorithm I for the multitarget case. 

From Table 2, the total number of cost evaluations c is calculated as 

(cost_2D_M_N ∗ L ∗ Num_scan) + (cost_6D_L_N ∗ L ∗ Num_scan/(N − 1)) = (3 ∗ 2 ∗ 

100) + (32 ∗ 2 ∗ 20) = 1880 cost evaluations.  The number of cost evaluations is reduced 

by more than 25 times by using Algorithm II instead of Algorithm I.  It is important to 

note that much of the savings is attributed to the elimination of the sliding batch in 

Algorithm II and the 2D LP data filtering that reduces the number of measurements per 

scan from M to the number of tracks L.  The 2D LP for the single-target section of the 

algorithm provides most of the computational savings.  The comparison of costs and 

number of reduced Kalman filters between Algorithm I and Algorithm II is provided in 

Table 7.  

 

Table 7.   Comparison of Algorithm I and II functions for calculating the number of 
cost evaluations and the number of Kalman filters in a reduced set for a 

single track and a batch length (N − 1), where m is the varying number of 
measurements for scan n from 1 to (k − 1), and k is the dimensional 

assignment from 2 to N.  The value ln is the number of 2D LP extracted 
measurements for scan n from 1 to (k − 1), and k is the dimensional 

assignment from 2 to N.  Note that, for any scan n, ln ≤ L where L is the 
number of tracks. 
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III. SIMULATION AND RESULTS 

The following simulation is based on a study conducted by Willet et al. [1] for 

various MHT batch-style algorithms for a passive sonar line array.  The results from [1] 

are not reproduced as part of this thesis.  Figure 7 shows a sample case with two targets 

crossing in a cluttered environment where the crossing occurs over 100 scans.  The solid 

green lines represent the true target trajectories.  The zoom view on the right shows the 

difficulty a tracker would have in interpreting the data during the long-duration crossing 

of 100 scans.  The goal of this study is to extend the batch length, using MDA or another 

method, to beyond the length of the crossing.  The objective for the tracking algorithm is 

to maintain track on all targets through the crossing.  Because of the exponential nature of 

MDA and the current state of computing resources, it is impractical to develop a tracker 

with acceptable runtime performance for batch lengths of 100 scans or more without 

major pruning of the cost evaluations or the use of other suboptimal techniques.  

Algorithm II provides a more efficient method for extending the batch length while still 

adhering to the basic concepts of MDA. 
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Figure 7.   Sample simulated case with two targets in linear straight-line motion through 
a 100-scan crossing in a cluttered environment, λ = 0.01 (left).  In a zoom view in 
the area of the target crossing, or approximately 100 time scans (right), the solid 

green lines represent the true target trajectories. 
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In all of the simulations, the PD = 70%, and σr = 2, where PD is the probability of 

detection, and σr is the measurement error standard deviation.  Thus, when σr = 2, the 

targets are within 2σr of one another during the 100 scans of crossing.  The Kalman 

filter’s initial process noise variance 2

0f
σ  equals 0.0625.  In these simulations, the value 

for σq, the process noise standard deviation for the Kalman filter, is set to 0.0005, which 

corresponds to a final position standard deviation of ( )( )( ) 2/16/121 ++ nnnT qσ  = 3.23.  

This value is important because it determines the stiffness of the track and/or the 

randomness of the simulated measurements as input to the tracker.  λ = 0.0, 0.01, 0.02, 

and 0.05 are the clutter density levels for the trials.  For instance, a clutter density of 0.01 

corresponds to a single clutter measurement in a linear space of a 100 points.  The 

negative Kalman filter likelihood function’s clutter density parameter eλ  in Equation (14) 

is set at 0.01 for all cases.  There were 100 trials conducted for each value of the clutter 

density level λ .  Each trial consisted of 500 scans of data with two crossing targets.  The 

tracks were initiated in all scenarios at 10 and −10 with zero velocity.  Figure 8 shows 

sample clutter levels and track crossing scenarios used as input and output for the test 

results.  The results from the 100 trials actually included five track crossing scenarios—

when all tracks are tracking (both tracking), both tracks bounce (switched), the tracks 

coalesce (coalesced), only a single track is tracking (one only), and none of the tracks are 

tracking the target (neither).  The coalesced outcome seldom occurred for the MDA 

algorithm—only for the high clutter case.  This reflects the constraints imposed as part of 

the discrete optimization problem.  The thin green and blue lines represent the truth of the 

target paths.  The thicker solid green and blue lines represent the tracker outputs. 
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Figure 8.   Sample clutter levels and track crossing scenarios used as input and output to 
obtain test results:  zero clutter scenario with both tracks on target (top left), a 

clutter level of 0.01 and only one track on target (top right), a clutter level of 0.02 
and both tracks bounce (bottom left), and a clutter level of 0.05 and neither track 

is on target (bottom right). 

Figure 9 shows the MDA results of using Algorithm I, a typical sliding batch 

implementation of the MDA-style tracker, with batch lengths (N − 1) of 1, 2, and 3 

(corresponding to 2D, 3D, and 4D implementations of MDA).  Past the 4D mark, the 

number of calculations to form the cost matrix is large (see Table 5).  For 4D or greater, it 

is not possible to obtain the simulation runs in a reasonable length of time.  The results 

show that with no clutter (λ = 0.0), the 2D assignment tracks both targets in more than 
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50% of the cases.  The exact value is 56%, with 95% confidence intervals between 

46.27% and 65.73%, based on Bernoulli trials.  For batch lengths of 2 and 3, Algorithm I 

tracks correctly more than 70% of the time in no clutter.  For a batch length of 2, 72% of 

the crossings are tracked correctly, with 95% confidence intervals between 63.2% and 

80.8%.  For a batch length of 3, the correct crossings increase to 75%, with 95% 

confidence intervals between 66.51% and 83.49%.  When λ = 0.01, the correct tracking 

performance degrades to less than 30% of the time for all batch lengths.  Table 8 gives 

the percentage of correct crossings (i.e., both targets tracked through the crossing) in the 

Algorithm I results, with 95% confidence intervals, for batch lengths of 1, 2, and 3 with 

λ = 0.0, 0.01, 0.02, and 0.05 for each batch length.  Increasing the batch length from 2 to 

3 does improve the performance slightly for λ = 0.01.  As the clutter level is increased, 

the algorithm performance decreases as expected. 
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Figure 9.   Results from Algorithm I:  ND LP MDA version for straight-line model, 
σq = 0.0005.  For each group of bars, the three numbers at the bottom (1, 2, 3) 
represent the batch length (N − 1), with 100 trials per bar.  The groups, left to 

right, represent clutter density parameter λ at 0.0, 0.01, 0.02, 0.05. 
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Batch 
Length λ 

Correct
Crossings

(%) 

95% 
Lower 
Bound 

95% 
Upper 
Bound 

1 0 56 46.27 65.73 
1 0.01 1 0 2.95 
1 0.02 0 0 0 
1 0.05 2 0 4.74 
2 0 72 63.2 80.8 
2 0.01 26 17.4 34.6 
2 0.02 22 13.88 30.12 
2 0.05 13 6.41 19.59 
3 0 75 66.51 83.49 
3 0.01 27 18.3 35.7 
3 0.02 21 13.02 28.98 
3 0.05 20 12.16 27.84 

Table 8.   Algorithm I correct track crossings (both targets are being tracked) in 100 
trials if σq = 0.0005, with 95% confidence intervals.  Batch lengths are 1, 2, 

and 3 for λ = 0.0, 0.01, 0.02, and 0.05. 

 

Because of the excessive time required to process batch lengths of a higher order 

with Algorithm I, Algorithm II was developed to speed up the processing time by 

combining the 2D and ND versions of the MDA algorithm.  The 2D LP tracker is used 

until the tracks are about to cross.  In all cases, the crossing occurs at scan 200.  The 2D 

LP tracker is again used when the tracks exit the crossing at scan 305.  As the track 

crossing occurs, a 2D-ND LP tracker is used with various batch lengths.  The results from 

these trials are shown in Figure 10.  For the value of σq = 0.0005, the algorithm performs 

very well for batch lengths of 2 through 10, with 99% tracking of both targets in 

moderate clutter (λ = 0.01).   

Table 9 gives the percentage of correct crossings (both targets tracked through the 

crossing) in the Algorithm II results, with 95% confidence intervals, where σq = 0.0005, 

for batch lengths of 1, 2, 3, 5, and 10 with λ = 0.0, 0.01, 0.02, and 0.05 for each batch 

length.  The performance degrades with increasing clutter as expected. 
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Figure 10.   Results from Algorithm II:  2D-ND MDA fast version, σq = 0.0005.  For each 
group of bars, the five numbers at the bottom (1, 2, 3, 5, 10) represent the batch 
length (N − 1), with 100 trials per bar.  The groups, left to right, represent the 

clutter density parameter λ at 0.0, 0.01, 0.02, 0.05. 
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Batch 
Length λ 

Correct
Crossings

(%) 

95% 
Lower 
Bound 

95% 
Upper 
Bound 

1 0 56 46.27 65.73 
1 0.01 1 0 2.95 
1 0.02 0 0 0 
1 0.05 2 0 4.74 
2 0 100 100 100 
2 0.01 99 97.05 100 
2 0.02 95 90.73 99.27 
2 0.05 52 42.21 61.79 
3 0 100 100 100 
3 0.01 99 97.05 100 
3 0.02 95 90.73 99.27 
3 0.05 52 42.21 61.79 
5 0 100 100 100 
5 0.01 99 97.05 100 
5 0.02 95 90.73 99.27 
5 0.05 54 44.23 63.77 
10 0 100 100 100 
10 0.01 99 97.05 100 
10 0.02 95 90.73 99.27 
10 0.05 52 42.21 61.79 

Table 9.   Algorithm II correct track crossings (both targets are being tracked) in 100 
trials if σq = 0.0005, with 95% confidence intervals.  Batch lengths are 1, 2, 

3, 5, and 10 for λ = 0.0, 0.01, 0.02, and 0.05. 

 

Because the Algorithm II results were good with σq set to 0.0005, σq was 

increased to 0.002 for the four clutter levels used in the prior trials.  These results are 

shown in Figure 11 for batch lengths of 1, 2, 3, 5, 10, and 15.  The results indicate that 

the Algorithm II tracking performance is better than 90% in terms of correct crossings for 

batch lengths greater than 1 with no clutter.   

Table 10 gives the percentage of correct crossings (both targets tracked through 

the crossing) in the Algorithm II results, with 95% confidence intervals, where 

σq = 0.002, for batch lengths of 1, 2, 3, 5, 10, and 15 with λ = 0.0, 0.01, 0.02, and 0.05 for 

each batch length.  As the clutter level increases, the tracking performance decreases 

proportionately for batch lengths greater than 1.  At each level of clutter above λ = 0.0, 

the tracking performance increases as the batch length increases.  With σq = 0.002, the 
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trend in the results for clutter levels λ of 0.01, 0.02, and 0.05 indicates that increasing the 

batch length leads to a higher probability of maintaining track for long-duration crossings 

of 100 scans. 

 

 1  2  3  5 1015  1  2  3  51015  1  2  3  5 1015  1  2  3  51015
0

20

40

60

80

100

120

140

Batch Length (N-1)

p
e

rc
e

n
ta

g
e

 

 

both track ing
switched
coalesced
one only
neither

 

Figure 11.   Results from Algorithm II:  2D-ND MDA, σq = 0.002.  For each group of 
bars, the six numbers at the bottom (1, 2, 3, 5, 10, 15) represent the batch length 

(N − 1), with 100 trials per bar.  The groups, left to right, represent clutter density 
parameter λ at 0.0, 0.01, 0.02, 0.05.  
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Batch 
Length λ  

Correct
Crossings

(%) 

95% 
Lower 
Bound 

95% 
Upper 
Bound 

1 0 0 0 0 
1 0.01 0 0 0 
1 0.02 0 0 0 
1 0.05 0 0 0 
2 0 98 95.26 100 
2 0.01 63 53.54 72.46 
2 0.02 44 34.27 53.73 
2 0.05 37 27.54 46.46 
3 0 98 95.26 100 
3 0.01 64 54.59 73.41 
3 0.02 49 39.2 58.8 
3 0.05 34 24.72 43.28 
5 0 98 95.26 100 
5 0.01 63 53.54 72.46 
5 0.02 40 30.4 49.6 
5 0.05 35 25.65 44.35 
10 0 97 93.66 100 
10 0.01 69 59.94 78.06 
10 0.02 51 41.2 60.8 
10 0.05 41 31.36 50.64 
15 0 98 95.26 100 
15 0.01 72 63.2 80.8 
15 0.02 56 46.27 65.73 
15 0.05 44 34.27 53.73 

Table 10.   Algorithm II correct track crossings (both targets are being tracked) in 100 
trials if σq = 0.002, with 95% confidence intervals.  Batch lengths are 1, 2, 

3, 5, 10, and 15 for λ = 0.0, 0.01, 0.02, and 0.05. 

The appendix presents the normalized estimation error squared (NEES) and the 

root-mean-square error (RMSE) [25, pp. 234–235] for the average when both targets are 

being tracked correctly through the long-duration crossing for each of the test cases as a 

function of batch length and clutter density λ.  The 95% confidence bounds for the two 

dimensions (position and velocity) are plotted and labeled on all of the NEES plots.  In 

all cases, the 95% chi square distribution lower bound and upper bound are 0.0506 and 

7.3778, respectively.  

Notice that the tracker performance degrades with increasing clutter density λ in 

both the NEES plots and RMSE curves for both Algorithms I and II and also in the case 

where σq is increased.  This effect is due to the nature of the MDA and other non-
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Bayesian association algorithms, such as nearest neighbor, strongest neighbor, and track 

split approaches [13, pp. 119–141], where a Kalman filter is used to estimate the state 

vector.  A Kalman filter’s estimate does not update its covariance update to measure its 

uncertainty as to whether the associated assignment originated from the target or was 

associated to clutter. 

In the MDA batch approach, all measurement-to-track assignments are considered 

along the batch, but based on the constraints imposed, the maximum likelihood set of 

measurements is used to update the Kalman filters associated to the prior tracks.  In the 

simulation being studied here, two tracks are initiated, and because a standard Kalman 

filter is utilized for state estimation, any association errors due to increasing clutter will 

detrimentally affect the tracker performance.  Longer batch lengths for Algorithm I 

should improve the performance as clutter increases because the measurement-to-track 

assignment is exhaustive along the batch and also a longer time frame would be available 

to choose the correct path from the hypothesis tree.  In Algorithm II, even though greater 

batch lengths are more feasible, the approach is considered suboptimal because a 2D 

forward filter is used to prune the measurement set.  Any errors in the 2D association 

process will influence the subsequent ND assignment process and affect the tracker’s 

results. 

In Bayesian association algorithms, such as PDA and MHT, an exhaustive set of 

probabilities are calculated for every measurement-to-track pair.  In PDA-style 

algorithms [13, pp. 119–141], the measurement origin uncertainty is integrated as part of 

the tracking filter, and the covariance estimate is duly updated to properly measure the 

consistency of a track.  In MHT style algorithms [11], [12], although a Kalman filter is 

used to estimate the state vector, the initialization of tracks is incorporated as part of the 

tracking function, and every possible hypothesis is calculated for all scans in time, 

including the possibility that a measurement originated from a new target.  This is 

considered an optimal approach.   
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IV. CONCLUSIONS 

This study investigated two versions of a batch-oriented, MDA tracking algorithm 

to examine target crossings on the order of 100 scans in duration as tracked by a passive 

sonar line array.  Many of the computational load issues in the generation and evaluation 

of the costs were identified to form the objective function.  Linear programming 

relaxation was used to solve the assignment problem.  A suboptimal but faster version of 

the ND assignment was developed to observe the effect of increased batch length on 

tracking through crossings.  Batch lengths of up to 15 scans, or 16D assignment, were 

developed and tested on data with various levels of clutter for the suboptimal version.  

The two algorithms were tested via 100-trial Monte Carlo simulations. 

Algorithm I, the optimal version, was tested up to the 4D assignment case.  The 

results showed track repulsion behavior dominating correct tracking through crossings, 

which was achieved in less than 30% of the trials; the tracks were switched more than 

60% of the time in moderate clutter (λ = 0.01).  With a batch length of two and λ = 0.01, 

tracks were switched 70% of the time, with 95% confidence intervals between 61.02% 

and 78.98%, based on Bernoulli trials.  With a batch length of three and λ = 0.01, tracks 

were switched 69% of the time, with 95% confidence intervals between 59.94% and 

78.06%.  Table 8 gives the percentage of correct track crossings for each case. 

Algorithm II—suboptimal but faster—exhibited significantly better performance:  

the percentage of correct track crossings exceeded 99% for batch lengths of two or more 

and λ = 0.01, using the same process noise standard deviation as for Algorithm I.  Table 9 

gives the percentages observed in each case and the confidence intervals.  When the 

standard deviation was increased for the Algorithm II results, the trend showed the 

number of correct track crossings generally increasing as batch length increased.  A 

definitive conclusion cannot be drawn on this point because the spread in the data, <10%, 

is not statistically significant.  The true effect of batch length on correct crossings can 

only be verified by testing with batches much longer (i.e., (N − 1) > 100 scans) than the 

15 scans used here. 
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Figure 12.   Average NEES for Algorithm I:  2D LP, 0.0005qσ = . 
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Figure 13.   Average RMSE for Algorithm I:  2D LP, 0.0005qσ = . 
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Figure 14.   Average NEES for Algorithm I:  3D LP, 0.0005qσ = . 
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Figure 15.   Average RMSE for Algorithm I:  3D LP, 0.0005qσ = . 
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Figure 16.   Average NEES for Algorithm I:  4D LP, 0.0005qσ = . 
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Figure 17.   Average RMSE for Algorithm I:  4D LP, 0.0005qσ = . 
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Figure 18.   Average NEES for Algorithm II:  2D-3D LP, 0.0005qσ = . 
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Figure 19.   Average RMSE for Algorithm II:  2D-3D LP, 0.0005qσ = . 
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Figure 20.   Average NEES for Algorithm II:  2D-4D LP, 0.0005qσ = . 
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Figure 21.   Average RMSE for Algorithm II:  2D-4D LP, 0.0005qσ = . 
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Figure 22.   Average NEES for Algorithm II:  2D-6D LP, 0.0005qσ = . 
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Figure 23.   Average RMSE for Algorithm II:  2D-6D LP, 0.0005qσ = . 
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Figure 24.   Average NEES for Algorithm II:  2D-11D LP, 0.0005qσ = . 
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Figure 25.   Average RMSE for Algorithm II:  2D-11D LP, 0.0005qσ = . 
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Figure 26.   Average NEES for Algorithm II:  2D-3D LP, 0.002qσ = . 
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Figure 27.   Average RMSE for Algorithm II:  2D-3D LP, 0.002qσ = . 
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Figure 28.   Average NEES for Algorithm II:  2D-4D LP, 0.002qσ = . 
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Figure 29.   Average RMSE for Algorithm II:  2D-4D LP, 0.002qσ = . 
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Figure 30.   Average NEES for Algorithm II:  2D-6D LP, 0.002qσ = . 
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Figure 31.   Average RMSE for Algorithm II:  2D-6D LP, 0.002qσ = . 
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Figure 32.   Average NEES for Algorithm II:  2D-11D LP, 0.002qσ = . 
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Figure 33.   Average RMSE for Algorithm II:  2D-11D LP, 0.002qσ = . 
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Figure 34.   Average NEES for Algorithm II:  2D-16D LP, 0.002qσ = . 
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Figure 35.   Average RMSE for Algorithm II:  2D-16D LP, 0.002qσ = . 
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